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Abstract

Two methods for representing discrete image data on rectangular lattices using fractal surfaces
are proposed. They offer the advantage of a more general fractal modeling compared to previous
one-dimensional fractal interpolation techniques resulting in higher compression ratios. Theory,
implementation and analytical study of the proposed methods are also presented.
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1. INTRODUCTION

The theory of image coding using an iterated func-
tion system, or IFS for short, was first proposed
by Barnsley (see, for example, Ref. 1). With the
help of IFS’s along with a collage theorem, he laid
the foundation of the fractal-based image compres-
sion. A set of contractive affine transformations can
approximate a real image and so, instead of storing

the whole image, it is enough to store the relevant
parameters of the transformations reducing mem-
ory requirements and achieving high compression
ratios.

The effectiveness of fractal image compression, or
FIC for short, has been demonstrated by Jacquin,?
Barnsley and Hurd? and Fisher? by showing that a
well-designed fractal compressor yields comparable
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compression ratios and image quality to the JPEG
algorithm. Moreover, FIC has the unique property
of resolution-independence, that is, the same frac-
tal representation can be decoded to various output
devices in the best resolution for each of them. How-
ever, the computational requirements of the com-
pression algorithm are orders of magnitude greater
than those of the decompressor. An overview of the
variety of schemes that have been investigated can
be found in Wohlberg and de Jager.® The books
by Lu® and Fisher? combine introductory material
with an in-depth discussion of many aspects of frac-
tal coding.

Barnsley introduced a class of functions (see, for
example, Ref. 1) which he called fractal interpola-
tion functions, or FIF’s for short. He worked basi-
cally with affine FIF’s, in the sense that they are
obtained using affine transformations. After that,
FIF’s can be used as a variation of fractal image
compression methods. Mazel and Hayes” first intro-
duced two methods based on FIF’s for modeling
single-valued discrete-time sequences: the self-affine
and the piecewise self-affine fractal model. A few
years later, in 1994, Ali and Clarkson® applied the
self-affine model in order to compress static image
frames. Our intention is to further extend the afore-
mentioned models so that the resulting attractor
lies entirely in R® and not to be the projection
on R?, like in the piecewise hidden-variable fractal
model, which was an extension of the piecewise self-
affine IFS model from R? to R? by Mazel®. Further-
more, the model that we propose is also piecewise
self-affine. This extension permits the representa-
tion of static images with a fractal model that is
more general, flexible and computationally efficient
compared with the hidden-variable model.

2. THE 1D FRACTAL
INTERPOLATION MODEL

2.1. Basic Concepts of FIC Using
IFS’s

An IFS is defined as a pair consisting of a complete
metric space (X, p), e.g. (R™, ]| -]|) or a subset, and
a finite set of continuous mappings w;: X — X, i =
1,2,..., M. It is often convenient to write an IFS
formally as { X;wy,wa,...,wy} or, somewhat more
briefly, as {X;wi_p}. If w; are contractions with
respective contractivity factors s;,i = 1,2,..., M,
the IFS is termed hyperbolic. The attractor of a
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hyperbolic IF'S is the unique set Ao, = klim Wk (Ap)

for every starting set Agp, where
M
W(A) = Jwi(A) forall A€ H(X),
i=1

and H(X) is the metric space of all non-empty com-
pact subsets of X with respect to some metric, e.g.
the Hausdorff metric.

The fundamental principle of FIC consists of the
representation of an image by an IFS of which the
fizxed point is close to that image. Therefore, the
encoding process is first to find an IFS and then a
suitable transformation W whose fixed point is close
to the given image. The usual approach is based on
the next theorem.

Theorem 1 (The Collage Theorem).
(H(X),h), where h is a metric, obeys

If B €

h(B,W(B)) <e,

then
€
1—3g’

h(B,Ax) <

where s = max{s; : 1 =1,2,...,M}.

The Collage Theorem provides a measure of the
goodness of fit of an attractor associated with an
IFS and a given non-empty compact set. An attrac-
tor that is close to a given set is one with an associ-
ated IF'S such that the union of all the maps applied
to the given set is close to the given set. The closer
the union is to the given set, the closer the attrac-
tor of the IFS will be to the given set. Therefore,
in order to test the closeness of an attractor to a
given set, one need not compute the attractor itself.
The collage theorem, however, is not constructive, it
does not indicate how to find a set of proper maps,
but rather, it provides a way to test an IFS without
need for computation of the attractor.

While a few impressive examples of image model-
ing were generated by the original approach devised
by Barnsley, no automated encoding algorithm was
found. FIC became a practical reality with the
introduction by Jacquin of the Partitioned (or
Local) IFS (PIFS) which differs from an IFS in
that each of the individual transformation operates
on a subset of the image, rather than the entire
image. Since the image support is tiled by “range
blocks” each of which is mapped from one of the
“domain blocks” as depicted in Fig. 1, the combined
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Fig. 1 Each range block is constructed by a transformed domain block.

mappings constitute a transformation on the image
as a whole. The transformation minimizing the col-
lage error within this framework is constructed by
individually minimizing the collage error for each
range block, which requires locating the domain
block which may be made closest to it under an
admissible block mapping.

2.2. Image Compression Using
Affine Fractal Interpolation
Functions

It is well known (see, for example, Ref. 1) that
the attractor of an appropriately chosen IFS is the
graph of some continuous (usually fractal) func-
tion which interpolates the data points. By choos-
ing the interpolation points, say {(Tm,ym) € I xR :
m = 0,1,..., M} where x,, is strictly increasing
and I = [zg,zp] C R, as a subset of the data
points we seek a continuous function f: I — R (with
fractal characteristics) that interpolates the above-
mentioned points according to f(z,,) = ym for
every m = 0,1,..., M. A section is defined as the
function values between interpolation points. Affine
fractal interpolation produces a self-affine (interpo-
lation) function by mapping the entire (graph of
the) function to each section of the function. The
interpolation function is constructed with M affine
mappings of the form

“()-(EDE o

with section endpoint constraints
wi<x0> = <xi_1> and
Yo Yi—1
Tm T

wl<yM>_<y¢>’ @)
for all i = 1,2,..., M. We refer to s; as the con-
tractivity factors. With each s; constrained to lie
in the interval (—1, 1), the collection of affine map-
pings defined by (1)—(2) form a hyperbolic IFS. The
Collage Theorem assures the goodness of fit of such
a function.

The affine fractal interpolation was expanded in
Mazel and Hayes” so that a pair of data points,
which are called addresses, is now associated with
each affine mapping. The pair of addresses associ-
ated with the ith map is called domain and denote
the interval of the function that is mapped between
the interpolation points. The piecewise self-affine
fractal model produces a function by mapping
domains of the function to sections of the function.
In addition, the width of each interval associated
with a map is constrained to be strictly greater than
the width of the section associated with that map-
ping. Note that points within a given section are
not necessarilly contained within any domain. The
piecewise self-affine fractal model is a generalization
of the affine fractal interpolation model and has its

mathematical roots embedded in recurrent IFS, or
RIFS for short, theory.'?
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Fig. 2 Domains for fractal interpolating surfaces over rectangular lattices using RIFS on (a) triangular tiling and (b)

rectangular tiling.

3. IMAGE COMPRESSION
USING 2D PIECEWISE
SELF-AFFINE FRACTAL
MODELS

In this section we introduce two piecewise self-affine
fractal models suitable for 2D signals that can be
viewed as a generalization of the one mentioned
in Mazel.? This means that sections and domains
do not lie on R, but on R? instead, yielding squares
of width § and A, respectively. A 2D section is called
range. When we wish to refer to an image, we refer
to the function z = f(x,y) that gives the grey level
at each point (z,y).

Let the discrete data {(z;,y;,2; = 2(xi,y;)) €
R : 4 = 0,1,...N;5 = 0,1,...,M} be known.
Each affine mapping that comprises the hyperbolic
IFS {R3;wi_n 1} is given by

x Apm  bum 0 x Ry
Wpm| Y | = | Cam dpm 0 Yyl + knm | »
z Enm  Gnm  Snm z lnm
(3)
with [spm| < 1 for every n = 1,2,...,N and
m=1,2,..., M. The condition
Anm  bum <1
Chm  dnm

ensures that

x Anm Onm, T hm
wn(y) = (o i) G3) + Gin)

is a similitude and the transformed surface does
not vanish or flip over. The distances between
the nodes are ¢, and J,, whereas between the
vertices A, B,C,D are A, and A, (see Fig. 2a).
Constraints are made to map the vertices of the
respective domain to the vertices of the region (see
Fig. 2b). Since an image is modeled as a func-
tion f(z,y), we can apply W, to an image f by
Wnm (f) = wpm(z,y, f(z,y)). The coordinates of
the region vertices are E(Zp—1,Ym—1,%n—1,m—1)s
F(xnyym—lvzn,m—l)y G(xn—bymvzn—l,m) and
H(2n, Yms Znm)-

3.1. Triangular Tiling

The interpolating nodes form NM rectangles (see
Fig. 2a or Ref. 11). By affine transformations one
can transform only triangle to triangle (there are
only nine parameters to be determined). Therefore,
each rectangle must be subdivided into two trian-
gles satisfying the relations A - £, B — F,C — H
and D — G. Now, an affine transformation can be
performed for each triangle separately, i.e.

x Anm, 0 0 T
Wpm | Y | = 0 dnm 0 Y
z €nm  Gnm  Snm z
hnm
+ | knm (4)
lnm
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and
x g 0 0 x
Wpg| Y | = _0 gpq _0 Y
z €pq  Ypg  Spg z
qu
+{ Fpq |- (5)
Ipq

The coordinates of the vertices A,B,C,D are
A(wo,y0,20), B(xo + Az, v0,21), C(wo + Agyyo +

Ay, 22), D(zo,y0 + Ay, 23), respectively. The
unknown parameters are
1) 1) 1)
Apm = A_xa:7 hnm = Tp—-1 — A—iwo, dnm = A_yy7
1)
Ko = Y1 —
nm Ym—1 Ay Yo,
1
€nm = A_[(Zn,m—l - Zn—l,m—l) - Snm(zl - ZO)]7
x
1

Gnm = A_[(zn—l,m = Zn—1,m—-1) — Snm (23 — 20)],
Y

lnm = Zn—1,m—1 = Snm~20 — Inm¥Y0 — Enm L0,

for relation (4) and

_ Oy — O - 1)
pg = A_z’ hpg = xp—1 — A_xxo’ dpq = A_yy,
— 0
k =Yqg—-1 — _yy07
Pq q A,
_ 1 _
€pq = A_I[(Zp,q — 2p-1,4) — Spg(22 — 23)];
_ 1 _
Ipq = A_y[(zp,q — Zpg—1) — Spg(22 — 21)],

lpg = (2p-1,¢ = 2p,q + 2pg—1) — Spq(23 — 22 + 21)

- gpqyo - qul'(),

for relation (5). The free parameters are sy, and
5pq- This gives 2VM- different interpolants.

For a geometric approach to determine the
contractivity factors in practice, we let |u| be the
maximum absolute vertical distance of the function
measured from the plane connecting the three ver-
tices of the domain, where the sign of u is taken as
positive or negative depending on whether the max-
imum distance occurs above the plane or below it,
respectively. Let v be the vertical distance between
a function value and the plane connecting the three
vertices of the region, where v is taken positive, if
the function value is above the plane and negative
otherwise. Then the contractivity factor is given by
the ratio v/ pu.

3.2. Rectangular Tiling

The under examination rectangle must satisfy the
relations A—FE,B—F,C—H and D—G (see
Fig. 2b). The coordinates of the vertices A, B, C, D
are  A(xa,ya,20),B(xa + Azya,z1),Clxa +
Ag,ya + Ay, 22), D(xa,ya + Ay, 23), respectively.
Then, the following system of linear equations
arises,

Zn—1,m = EnmT A + gnm(yA + Ay)

+ Spm23 + lum (6)
Znm = enm(TA + Ag) + Grm(ya + Ay)
+ Snmz2 + lum (7)
Znm—1 = €nm (T4 + Az) + gnmya
+ Snm21 + lum (8)
Zn—1,m—1 = €nmTA + InmYA + Snmz0 + lnm.- 9)

The unknown parameters are

a =l Rpm = —5—rac
nm — Arv nm — 4n—1 Az 0
5, 5

dnm = 3= Knm = Ym-1 — =—Yo-

Subtracting Eq. (6) from Eq. (7) we have
Znm — Zn—1,m = €nmODz + Snm (22 — 23)
and subtracting Eq. (9) from Eq. (8) we have
Znm—1 — Zn—1,m—1 = €nmAz + sSpm (21 — 20) -
Subtracting the above two equations we have
(Znm—1 — Zn—1,m-1) — (Zn,m — Zn—1,m)
= Spm[(z1 — 20) — (22 — 23)].
If (21 — 20) — (22 — 23) # 0, then

Znm—1 — Zn—1,m—1 t Zn—1,m—1 — Znm
21+ 23— 22— 20

Snm =

and

1
€nm = A_[Zn,m — Zn—1,m — Snm (Z2 - ZS)]-
T
Finally, subtracting Eq. (9) from Eq. (6) we can
determine the value of g, and I, by
1

Gnm = A_[Zn_l,m—l — Zn—1,m — $nm(20 — 23)]
Yy

lym = Zpn—1,m — EnmTA — GnmYA — SnmZ3.

We must now consider the case where (21 — 2g) —
(22 - 23) =0. Then; if Zn,m—1 +2n—1,m —Zn—1m—1—
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Zn,m = 0, the system is indefinite. This means that
we can choose any value for s,,,, and the values of
the other parameters are determined from the above
equations. But, if z,m-1 + 2n—1m — Zn-1m-1 —
Zn,m 7 0, then the system is unsolvable. This is
a degenerate case which will be arranged inside the
proposed algorithm.

In the 1D methods introduced in Mazel and
Hayes,” the contractivity factors were computed
either geometrically or analytically, with both meth-
ods requiring large amount of computations. In
the indefinite case, instead of choosing any arbi-
trary value, we compute the value of s,,, using
one of the two methods mentioned in Mazel and
|

N

ﬁ:{iXi i me ZXZZH—

N N
ZxX, ZXZ ZZ cdotZX2
=1 =1 =1

N
N
>

=1

Y2

1

N
N N N
Y- ZXQ ZXZ me

(
/5
[

- (xX,

A

N

N 2
() - [(Lr v T o
=1 =1 =1 i=1 i=1

) sl

Yi Zz]\;l Xz'2 - Zz]\;l Xi 25:1 XiYi) B

>
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Hayes” properly modified: According to the geomet-
ric approach, the value of p is deducted from the
maximum absolute vertical distances between the
function (signal) values and the least-square plane
of the four domain vertices, while the value of v is
computed from the vertical distances between the
function values and the least-square plane of the
four section vertices. We use the least-square plane,
because the four vertices of a domain or a region
are not necessarily coplanar. There is no need to
care about the discontinuities between the bound-
aries of the surfaces, because we are not interested
about the surface itself but only about its vertices.
The least-square plane of N points is determined
by z = ax + By + v, where

N N N N

DoXPY V- XYy X
i=1 i=1 i=1

I}

N

N

>

X2

1

N N

)

- <Zz]i1 Xi Zz]\;l XiZi — Zz]\;l Z Zf\; XZ2)

")/:

:Zi]ilXiZ VoY Xi =B 1XY

Zz l‘XV2

3.3. The Proposed Methods, Their
Compression Ratio and a
Variation of Them

If we are given wi,ws,...,wy:I? — I?, where
I = [0,1], then we can let D,, C I? denote the
domain of w,, and R,, C I? its range. Constraints
on the model parameters similar to Ref. 7 on p. 1730
are placed. The first is that the distance between
the interpolation points along the horizontal and
vertical direction is a constant, i.e. J, = d, = 0.
The second is that the distance between the address
points along the horizontal and vertical direction

3y, X7

)

is constant, i.e. A, = Ay = A, with the address
domains just touching, i.e. that each D,, is exactly
equal to a union of some ranges. So, taking N = M,
we set

T — Tm—1=0=Yn — Ym-1, m=12,.... M
and
:Z'm72_jm,1 :A:gm,Q_gm,l, mzl,Q,...,M’

where A > § and §,A are chosen a priori, for
example A ad. The number of interpolation
regions, M N, is greater than the number of distinct
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Fig. 3 The image of Lena using rectangular and triangular tiling as well as the image of Barbara using rectangular tiling.

address domains, say M. An iterative algorithm
for finding the model parameters, i.e. the interpo-
lation points (x;,y;, 2ij), the contractivity factors
and the addresses associated with each region of the
function is presented in Bouboulis et al.'? Figure 3
illustrates each of the two proposed tiling schemes.

To compress an image using the proposed
algorithm we take a set of interpolation points (the
vertices of the regions) and a set of integer numbers
(the addresses), one for each region, which marks
the domain that is best mapped to the correspond-
ing region. It is possible (rather certain) that we will
have a set of contractivity factors from the cases in
which an indefinite system occurred. To reconstruct

the original image, we may use the decompression
algorithm also presented in Bouboulis et al.'?

Suppose we are dealing with an image with size
N7 x Ny pixels in which each pixel can be one of 256
levels of grey and we need to store the model param-
eters. Since their number is small, we can ignore it
for a while in order to simplify our computations.
The number of the domains is

Ny —1 Ny —1
A A ’
Each domain is recognized from an address fluctu-
ating from 0 to [(N; —1)/A][(N2 —1)/A] —1. Thus,
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to store any such address we need
ki = logy([(N1 — 1)/A][(N2 — 1)/A])

bits. We need also [(N7 —1)/d + 1][(Ng — 1)/ + 1]
points of the image as interpolation points. Obvi-
ously each such point needs 1 Byte = 8 bits in order
to be stored into memory. With these interpolation
points the image is divided into [(N1—1)/d] x [( N2 —
1)/6] regions. For each region we have to store its
relative address showing the domain that is best
mapped to this region. Assuming that this address
needs kq bits we have to store

(N15_1 +1> <N25_1 +1>8+N1

bits.

Before the compression the image needs N1 x No
pixels x 8 bits per pixel of memory. Thus, the com-
pression ratio will become

NiN,8 5
(N16—1 4 1) (N25_1 4 1) 8 4 N16—1 Ngé—l kl
for large Ny, Ns.
The Peak Signal-to-Noise Ratio (PSNR) used

to measure the difference between two images, is

defined as

—1Ny—1
o 0

ky

862
8+ k1

PSNR = 2010g10 ( :?/S>

where b is the largest possible value of the signal
(typically 255) and rms is the root mean square
difference between two images.

A variation of the proposed method is to obtain
a larger number of domains, thus increasing com-
pression time and PSNR, but decreasing compres-
sion ratio. In this approach, the distance between
two consecutive domain vertices instead of being
equal to A, is equal to ad. This means that two
consecutive domains are not just touching anymore
but covering over each other and thus having some
common pixels. In this way, we can increase the
number of domains thus affecting the compression
ratio. Generally, the number of the domains is

Ne-1 (N
5 “ 5 “

each of which is needed
kg =logy (N1 —1)/6 —a+1) (N2 = 1)/6 —a+1)]
bits. With the second approach we have to store

Ny —1 Ny —1 Ny —1Ny;—1
( 5 +1>< 5 +1>8+ 5 5

ko
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bits. Thus the compression ratio will become

N1N58
(P57 + 1) (P35 + 1) 8+ (B571) (%57 ko
862
- 8 + ko

for large Ny, No.

The new value of the compression ratio is slightly
smaller than the compression ratio of the previously
mentioned method. Specifically, if we apply these
two methods to one image with size 433 x 433 pix-
els using § =9 and A = 27, the compression ratios
we expect (according to the above forms) will be
approximately 40 for the first approach and 34 for
the second approach.

4. COMPARATIVE RESULTS
AND EXAMPLES OF THE 2D
PIECEWISE SELF-AFFINE
FRACTAL MODEL

The original images used as our reference points in
the experiments presented here are the 433 x 433 x 8
bits and the 2049 x 2049 x 8 bits images of Lena as
well as the 2049 x 2049 x 8 bits image of Barbara
shown in Fig. 3. For the calculation of the contrac-
tivity factors we used the geometric approach; for
their quantization we used 6 bit. In order to com-
pute the distances described in the algorithms, we
used the po (Pythagorean) distance measure.
Firstly, we applied to our images, which are 2D
signals, slightly altered versions of the two meth-
ods described in Mazel and Hayes” for 1D signals.
We simply split the images of size Ni X Ny pix-
els into N 1D signals (one signal for each line),
each one of them having M data points. Studying
Table 1, one can easily observe that the self-affine

Table 1 Comparison of Different 1D Meth-
ods for the 433 X 433 Image of Lena.

Method (6,A) Enc. Time PSNR Comp.

(sec) (dB) Ratio
Self-affine 194 20.87 1.33:1
Piecewise (3,6) 0.1 44.52 1.01:1
Piecewise (4,8) 0.1 42.8 1.35:1
Piecewise (8,16) 0.1 32.31 2.69:1
Piecewise (9,18) 0.1 30.07 3.02:1
Piecewise (12,24) 0.1 27.56 4.02:1
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compression ratio

(2)
Fig. 4 (a) The image of Lena compressed with the piecewise model for 6 = 12 and A = 24, (b) the relation between the

compression ratio and the value of §.

40
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— JPEG2000

100 150 200

Comp. Ratio

Fig. 5 Comparison of results for 2049 x 2049 Lena using rectangular tiling.

model needs more time than the piecewise self-affine
model, offering less quality. This is expected since
real images are not self-affine. On the other hand,
when using the piecewise fractal model and consid-
ering the real images as 1D signals, we lose a large
amount of information (see Fig. 4a). Figure 4b illus-
trates the linear relation between the compression
ratio and the value of 4.

The methods we introduced previously partition
one image into regions and domains; so it is neces-
sary that the dimensions of the image, when using
the first approach, must be multiples of A, while
when using its variation must be multiples of §.
For the rest, we must make some modifications to
the algorithms. It is obvious that, if the value of
A is very large, only a few images will be able to
be compressed using the first approach. This is one
of the reasons why the variation method is pre-
ferred. We applied the two approaches to the image

of Lena. Figure 5 shows PSNR versus compression
ratio for the 2049 x 2049 Lena using (a) some fractal-
based and (b) some fractal-based together with some
non-fractal-based methods using rectangular tiling.
“PSA2D” is the 2D piecewise self-affine model, while
“Barnsley” stands for the method devoloped by Iter-
ated Systems and described in Lu.® We used the
“JasPer” library which contains an implementation
of JPEG-2000 format defined in ISO/TEC 15444-1.
For the JPEG format we used the implementation
of the well-known Windows software “Corel Photo-
Paint.” Figure 6 is the performance graphs on the
testing images — the first graph shows the difference
between the two tilings as applied to Lena, while
the second shows the results for Barbara. To mea-
sure the time each method needed to compress this
image we used a Pentium IV PC with a 2.4 GHz CPU
clock running Windows XP. The results are shown in
Tables 2 to 4.
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Fig. 6 (a) Comparison between triangular and rectangular tiling for 2049 x 2049 Lena. (b) Comparison of results for

2049 x 2049 Barbara using rectangular tiling.

Table 2 Various Parameters of the 2D Method as
Applied on the Image of Lena (2049 x 2049).

Table 4 Various Parameters of the 2D Model as
Applied on the Image of Barbara (2049 x 2049).

Parameters Enc. Time PSNR Comp. Parameters Enc. Time PSNR Comp.
(6, A, dmax, €) (sec) (dB) Ratio (0,A,dmax,€) (sec) (dB) Ratio
64, 128, 4, 1 240 40.02 39.00:1 64, 128, 4, 1 127 30.57 39.03:1
64, 128, 4, 2 150 39.85 44.48:1 64, 128, 4, 2 87 30.37 51.75:1
64, 128, 4, 3 60 38.97 61.26:1 64, 128, 4, 3 r 30 59.06:1
64, 128, 4, 4 29 37.97 81.72:1 64, 128, 4, 4 57 29.48 65.62:1
64, 128, 4, 5 20 36.99 97.81:1 64, 128, 4, 5 49 28.87 69.52:1
64, 128, 3, 4 42 32.86 207.81:1 64, 128, 3, 4 50 25.28 192.56:1
64, 128, 2, 4 53 28.18 603.65:1 64, 128, 2, 4 49 23.13 592.74:1
64, 128, 1, 4 60 24.18 1782.76:1 64, 128, 1, 4 55 21.42 1788.84:1

Table 3 Various Parameters of the 2D Varia-
tion Method as Applied on the Image of Lena
(2049 x 2049).

Parameters Enc. Time PSNR Comp.
(0,A, dmax,€) (sec) (dB) Ratio
64, 128, 4, 1 300 40.72 32.38:1
64, 128, 4, 2 210 40.53 37.83:1
64, 128, 4, 3 120 39.47 54.91:1
64, 128, 4, 4 80 38.24 77.11:1
64, 128, 4, 5 54 37.14 93.60:1
64, 128, 3, 4 60 33.7 187.60:1
64, 128, 2, 4 120 29 534.76:1
64, 128, 1, 4 244 24.94 1569.49:1

We achieved a large compression ratio (double that
of the well-known JPEG format), but significantly
smaller PSNR. For the quantization of the data we
applied all the conditions discussed in Subsec. 3.5.
The method was implemented by using C4++ and
we created an executable that can compress any
image using the methods mentioned above.

5. CONCLUSIONS

Two methods and variations of them for construct-
ing, in general, discontinuous fractal surfaces for
data on rectangular lattices are derived. Although
our experiments indicate limited applicability for
engineering applications, the flexibility of our FIS’s
may find use in other visualization endeavors.

The 2D piecewise self-affine fractal models
described here achieve compression ratios compa-
rable to that of Barnsley’s and to JPEG, although
their major drawback is that they are less effec-
tive at the edges of the image. This happens
due to the type of transformations used to map
rectangular domains to rectangular subdomains.
Choosing a smaller value for § eliminates this
drawback, the PSNR value approaches the PSNR
value of the JPEG format, but the compression
ratio is decreased significantly.

The compression ratio may be improved by
reducing d close to the image edges since, in the
restimage, 0 will be relatively large, while the qual-
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ity of the reconstructed image would be significantly
better. The compression ratio may also increase by
observing that some domains are used more often
than others and applying some sort of compression
to the addresses (e.g. Huffman). Further extension
of these methods to construct continuous fractal
surfaces is essential (see also Ref. 13) and, when
using recurrent bivariate FIS’s on rectangular lat-
tices as in Bouboulis et al.'* establishes them as
very competitive alternative even to the JPEG 2000
format.
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